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Abstract
We present PyMarketSim, a financial market simulation environ-
ment designed for training and evaluating trading agents using
deep reinforcement learning (dRL). Our agent-based environment
incorporates key elements such as private valuations, asymmetric
information, and a flexible limit order book mechanism. We demon-
strate the efficiency and versatility of our platform through experi-
ments including both single-agent andmulti-agent dRL settings. For
single-agent settings, we showcase how our environment can be
used to learn background trading strategies implemented as recur-
rent neural networks. These trained response order networks (TRON
agents) can flexibly condition their behavior on observed market
characteristics. At the multi-agent level, we use empirical game-
theoretic techniques to identify equilibrium configurations of TRON
agents. Our open-source implementation provides researchers and
practitioners with a powerful tool for studying complex market
dynamics, developing advanced trading algorithms, and exploring
the emergent behaviors of financial ecosystems driven by machine
learning.
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1 Introduction
Financial market simulation has proved a useful tool for model-
ing the interplay of market microstructure and agent behavior. As
technological advances enable new market designs and algorithmic
trading behavior, understanding the implications becomes yet more
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important for market participants and other stakeholders. A partic-
ular development with transformational potential is the emergence
of deep reinforcement learning (dRL) [34] as a powerful tool for
automated generation of sophisticated trading strategies.

We address this need by updating and enhancing MarketSim:
a comprehensive financial market simulation environment mod-
eling agents who trade through mechanisms based on limit-order
books (LOBs).MarketSim has been employed in numerous agent-
based studies [33, 35, 36]. Our new implementation is designed to
facilitate the study of markets with trading policies trained using
dRL. By integrating dRL with flexible agent-based simulation of
LOB markets, we enable researchers to explore the implications
of AI for trading in a wide range of market scenarios with precise
specification of market microstructure and strategic interaction.

The contributions of this paper are threefold

(1) We release PyMarketSim with an MIT license to provide
researchers the tools to use this in their own work.1 Our
simulator is highly optimized to work inside deep RL work-
flows and comes along with wrappers to be used inside Gym-
nasium APIs along with a variety of different background
traders to use inside experiments.

(2) We develop a new type of background agent, the trained
response order network (TRON) agent, which employ policies
implemented by a recurrent neural network. These networks
are trained by dRL, in response to a specified market envi-
ronment. TRON agents exhibit a flexible ability to condition
behavior on market conditions, compared to heuristic trad-
ing strategies.

(3) We show how to equilibrate TRON agents using Policy Space
Response Oracles (PSRO) [24], a form of empirical game-
theoretic analysis [41] based on dRL.

In the following sections, we provide a detailed description of
the PyMarketSim environment, including its valuation model, LOB
implementation, and agent types. We then present experiments
demonstrating the capabilities of our simulation platform in both
single-agent and multi-agent RL scenarios. Finally, we discuss the
implications of our work and outline directions for future research.

1Available at github.com/umichsrg/pymarketsim. The package includes sample config-
urations as well as a tutorial.

https://doi.org/10.1145/3677052.3698639
https://doi.org/10.1145/3677052.3698639
github.com/umichsrg/pymarketsim
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2 Related Work
2.1 Market Simulation
Researchers have employed simulation to study financial markets
since at least the early 1990s. Studies employing the Santa Fe Artifi-
cial Stock Market [28] kicked off a literature in agent-based finance
[25], which produced many useful ideas for financial modeling.

PyMarketSim is a Python reimplementation and extension of
MarketSim, originally developed in Java by ElaineWah for an agent-
based study of latency arbitrage [35].MarketSim was based on a
discrete-event scheduler, with a modular design to flexibly accom-
modate a diversity of trading strategies and market mechanisms,
organized around an efficient order book data structure. The origi-
nal versionwas applied by researchers at the University ofMichigan
in investigations covering such topics as spoofing [37], welfare ef-
fects of market making, [36], and benchmark manipulation [33].
The new version supports training of new trading strategies using
dRL, and incorporation of trained traders in simulation.

ABIDES (Agent-Based Interactive Discrete Event Simulation) [6]
is likewise based on discrete-event processing, and designed for
flexible incorporation of agent trading strategies. ABIDES further
employs a uniform message-passing architecture based on stan-
dard market protocols. The system has achieved widespread use
in the research community, thanks to the support of JP Morgan AI
Research. An augmented version, ABIDES-Gym [1], provides an
interface to the popular OpenAI Gym environment for dRL.

An alternative to full agent-based simulation is to focus on in-
teraction with a LOB defined by an exogenous order process. This
allows simulation of trading strategieswith respect to historical data
(i.e., backtests), or with a mathematical LOB model [19]. Recently,
Frey et al. [12] introduced JAX-LOB, a LOB simulator designed to
exploit GPU computation via JAX [5] libraries. Jerome et al. [20]
likewise developed a LOB simulator with interfaces to facilitate
training of dRL agents.

Other recent works have also employed LOB market simulation
to train dRL trading agents. Maeda et al. [26] use an advantage-
actor-critic network for this purpose in a simulated market of their
design. Karpe et al. [22] apply double deep Q-learning to the optimal
order execution task within the ABIDES framework. Yao et al. [44]
study a simulated LOB market including RL-based agents with
designated roles (liquidity-providers and liquidity-takers) based on
prior work by Ardon et al. [2].

2.2 Trading Agents
Work in agent-based finance and AI introduced a variety of trading
agents based on heuristic strategies for LOB markets [40]. Finan-
cial market simulations typically start with basic strategies from
this literature. Perhaps most prominent is the zero intelligence
(ZI) strategy introduced by Gode and Sunder [14] to illustrate that
markets could reach competitive equilibrium without sophisticated
agents. Farmer et al. [11] argued that ZI agents are sufficient to
produce realistic results. Several authors proposed extensions of
ZI that adjust parameters based on experience in the market. ZI
Plus (ZIP) agents [8] incorporate a learning rate and momentum
term to adapt behavior to observed conditions. An alternative ap-
proach to incorporating experience is to explicitly learn a belief

function assessing the probability of transaction as a function of
bid price [13].

Researchers have also developed offline learning methods for
trading agents. Phelps et al. [31] used genetic search to set param-
eters for a heuristic strategy, in order to maximize evolutionary
fitness. Cliff [9] defined a version of ZIP with 60 parameters, also
tuned via a genetic algorithm. Schvartzman and Wellman [32] em-
ployed RL to find profit-maximizing policies over a tile-coded state-
action space. Many works since these have explored RL and other
learning methods for LOB environments.

3 PyMarketSim
A scenario in PyMarketSim comprises 𝑁 agents or traders inter-
acting to buy and sell securities through 𝐾 markets. The agents
are partitioned into a set of roles R, for example we might have
distinct roles for background traders and market makers. Each mar-
ket is associated with a single security and follows specified rules
of itsmarket mechanism. For simplicity in the descriptions and
examples below we focus on a single market mechanism (𝐾 = 1),
however many applications of financial market simulation hinge on
issues involving multiple inter-related markets and PyMarketSim
is built with the more complicated cases in mind.

3.1 Simulation Scheme
At the core of PyMarketSim is the Simulator object, which serves
as the central orchestrator: managing markets, agents, and their in-
teractions. As depicted in Fig. 1, the simulator controls the temporal
flow of the simulation and mediates how and when agents interact
with the market environment. The simulation unfolds in discrete
time steps, with each agent of role 𝑟 ∈ R having a probability 𝜆𝑟 of
arrival to the market at any given time step. This activation prob-
ability allows for varying reaction times and trading frequencies
among different agent roles. The simulator employs an efficient
event-driven approach, focusing computational resources on time
steps where market activity occurs. This approach significantly
reduces runtime compared to a naive implementation that would
process every time step regardless of activity.

When at least one agent arrives2 or the market needs to take
an action during a time step, the simulator executes the following
sequence of operations:

(1) Observation Phase. For each arriving agent, the simulator
retrieves observations from all markets the agent is permitted
to interact with. These observations typically include the
current state of the order book, recent trades, and other
relevant market data.

(2) Action Phase. The agents who arrive are randomly shuffled,
and then place orders in turn. Each order consists of a price,
quantity, time step, and a unique order identifier. The random
shuffling prevents any systematic bias that could arise from
a fixed order of agent actions.

(3) Market Operation. The market takes its actions such as
handling trades, paying dividends, posting information, etc.

2Given sufficiently fine time granularity, multiple agents arriving in the same time
step will be rare. The system needs to handle these situations, however, so we describe
the general case.
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Figure 1: Interaction between traders and amarket inMarket-
Sim. A discrete-event queue controls the arrivals of traders
and market-initiated events.

(4) Time Advancement. The simulator advances to the next
time step where at least one agent is scheduled to arrive or
the market has a scheduled action.

After each arrival, PyMarketSim generates the agent’s next ar-
rival time in advance using the geometric distribution. This allows it
to record the arrival event on the scheduler. Inactive time steps are
simply skipped, reducing the effective number of steps processed
from 𝑇 (total simulation time) to approximately 𝑁 × 𝜆 ×𝑇 , where
𝑁 is the number of agents and 𝜆 the average arrival rate.

The simulator also manages market events, such as dividend
payments or information releases, through the scheduling mecha-
nism. Market operations may be scheduled for specific time steps,
or triggered by other events.

The simulation scheme in PyMarketSim is designed to be flexible
and extensible. Researchers can implement custom market mecha-
nisms, introduce new agent types, or modify the activation process
to suit specific needs. This flexibility makes PyMarketSim a power-
ful tool for exploring a wide range of market scenarios and trading
strategies.

3.2 Market
MarketSim implements market mechanisms for simulating finan-
cial asset trading. While the framework supports multiple market
types and assets, our experiments focus on a continuously clearing
market for a single asset. The market module in PyMarketSim has
the following key components:

(1) Agent Interaction: The market interfaces with multiple
agents, processing their orders and providing market infor-
mation.

(2) Information Dissemination: It provides agents with:
• a (noisy) observation of the fundamental value
• current best price offered to buy (BID) and best price to
sell (ASK)

• current time step
(3) Order Processing: Orders received from agents are passed

to the LOB for processing.

Operation Complexity
Insert 𝑂 (log(𝑛))
Remove ≈ 𝑂 (log(𝑛))
Quote 𝑂 (1)
Clear 𝑂 ( |𝑆in |)

Table 1: Complexity of LOB operations using 4-Heap, with 𝑛
the size of the largest heap.

(4) Clearing Mechanism: The market matches compatible
buys and sells, determines the price of transaction, and clears
the mathing orders out of the LOB. In a continuous market,
clearing occurs at each time step after an agent acts. In a
call market (also called batch auction), clears are invoked
periodically.

(5) Transaction Recording: The market maintains a record of
matched orders from previous time steps consisting of the
matched price, quantity, and order IDs.

Themarketmodule is designed towork in conjunctionwith the LOB
module, which handles order storage, matching, and execution. This
modular design allows for potential modifications to market rules or
order matching algorithms without altering the core market logic.
The description below focuses on a continuous market for a single
asset, but the LOB structure is designed to support call markets as
well. MarketSim also supports extensions to other market types
and multi-asset scenarios.

3.3 Limit Order Book
Our LOB is implemented by the 4-Heap data structure of Wurman
et al. [43]. At any point, an order is classified as matched or un-
matched. A continuous market, by definition, has only unmatched
orders as matches are immediately transacted. The orders are orga-
nized in four heaps:

𝐵in A min-heap of matched buy orders.
𝐵out A max-heap of unmatched buy orders.
𝑆in A max-heap of matched sell orders.
𝑆out A min-heap of unmatched sell orders.

Let 𝑉 (𝐻 ) denote the order price of the item at the top of heap 𝐻 .
The LOB has to support four main operations:

(1) Insert: Place a new order into the appropriate heaps. Since
the orders can be of any quantity, this may involve splitting
the order or past orders between the in and out heaps.

(2) Remove: Update the heaps to reflect order removal. Our im-
plementation speeds up this computation by removing un-
matched orders in a lazy manner.

(3) Quote: The BID quote is max(𝑉 (𝑆in),𝑉 (𝐵out )) and the ASK
quote is min(𝑉 (𝑆out ),𝑉 (𝐵in)).

(4) Clear: Matched buy and sell orders are removed from the
LOB and assembled into transactions.

Table 1 summarizes the operations, their complexity and runtime
at different book sizes and order quantities.
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3.4 Valuation Model
The valuation of the security for each agent is determined by two
components: one common to all agents and another (optional) pri-
vate to each agent. The common component, called the fundamen-
tal value, represents the intrinsic economic value of the security.
The private component reflects agent-specific factors bearing on a
security’s value, for example liquidity needs, risk preferences, and
correlations with other (unmodeled) agent holdings.

The fundamental value is modeled using a mean-reverting sto-
chastic process parameterized by the fundamental mean 𝑓 ; the
mean reversion parameter 𝜅 ∈ [0, 1] which quantifies the speed at
which the fundamental value reverts to its mean; and the shock vari-
ance 𝜎2

𝑠 ∈ [0,∞) which impacts the zero-mean random Gaussian
shock 𝜖𝑡 ∼ N(0, 𝜎2

𝑠 ) applied to the fundamental at each time step 𝑡 .
The fundamental value 𝑓𝑡 at time step 𝑡 is recursively generated as
follows, with 𝑓0 = 𝑓 :

𝑓𝑡 = 𝜅𝑓 + (1 − 𝜅) 𝑓𝑡−1 + 𝜖𝑡 , (1)

InMarketSim, rather than computing 𝑓𝑡 at each time step, the
fundamental value is explicitly generated only when an agent in-
teracts with the market. Since no agents arrive in most time steps,
this lazy approach results in a large speedup compared to the naive
fundamental generation.

𝑓𝑡 = (1 − 𝜅)𝑑𝑡 𝑓𝑡latest + 𝑟 𝑓
𝑑𝑡−1∑︁
𝑖=0

(1 − 𝜅)𝑖 +
𝑑𝑡−1∑︁
𝑖=0

(1 − 𝜅)𝑖𝜖𝑖 (2)

Agents are assumed to know this process and its parameters 𝑓
and 𝜅. Thus, based on an observed fundamental at time 𝑡 they can
estimate the final fundamental value:

𝑓𝑇 = (1 − 𝜌) 𝑓 + 𝜌 𝑓𝑡 , (3)

where 𝜌 = (1 − 𝜅)𝑇−𝑡 .
Private valuations are based on the model of Goettler et al. [15]

and are parameterized by the maximum holding, 𝑞max ∈ [0,∞),
and the private value variance, 𝜎2

pv ∈ [0,∞). Each agent is assigned
a vector Θ𝑖 with |Θ𝑖 | = 2𝑞max, of private values representing the
marginal value of buying or selling an additional security. The
vector components 𝜃𝑘

𝑖
are drawn from N(0, 𝜎2

pv), and sorted in
descending order to ensure decreasing marginal value of extra
units.

Θ𝑖 = (𝜃−𝑞max+1
𝑖

, . . . , 𝜃0
𝑖 , 𝜃

1
𝑖 , . . . , 𝜃

𝑞max
𝑖

)

Given agent 𝑖 currently holds 𝑞𝑖 units of the security, their valu-
ation of an additional unit is:

𝑣
𝑞

𝑖
= 𝑓𝑇 +

{
𝜃
𝑞𝑖+1
𝑖

if buying
𝜃
𝑞𝑖
𝑖

if selling
The value of each agent’s portfolio at the end of the simulation

is a sum of their cash, their holdings’ value (𝑞𝑇 < 0 if the agent is
short), and sum of their private values

𝑐𝑇 + 𝑞𝑇 𝑓𝑇 +


∑𝑞𝑇

𝑗=1 𝜃
𝑗
𝑖

𝑞𝑇 > 0
0 𝑞𝑇 = 0∑0

𝑗=𝑞𝑇 +1 −𝜃
𝑗
𝑖

𝑞𝑇 < 0
(4)

3.5 dRL Wrappers
PyMarketSim provides GymAPIs for single-agent dRL. Fig. 2 shows
how a learning agent interacts with the market mechanism and
background traders. Typically, in a Gym setup, a learning agent
engages with the environment through a step function, which takes
the agent’s action as input and returns the observation, reward, and
episode termination status. From the learning agent’s viewpoint,
the background traders and the market mechanism are all part
of the environment. At each time step, only the agents that have
arrived can take actions and their actions collectively influence the
current market state; until then, all other traders continue their
trading activities. In particular, upon the learning agent’s arrival,
it receives the current market observation and selects an action
based on this observation and its strategy. Once the action is com-
municated to the market, background traders carry on their trading
activities until the learning agent arrives again. At this point, the
effect of the action has been revealed, providing both the reward
and a new observation of the current market. A transition tuple,
which includes the observation, the action, the reward, and the
next observation, is then formed. This information can be used by
dRL to update the strategy. Note that by providing the transition
information, our dRL wrapper is agnostic to specific RL algorithms.

Figure 2: Deep RL wrapper workflow.

Our dRL wrapper is highly customizable, allowing for tailored
reward functions, action spaces, and state (observation) spaces to
accommodate various agent architectures, market scenarios, and
dRL algorithms. For instance, the return for a learning agent is
defined as the net cash at the end of a simulation, assuming liquida-
tion of holdings at the final fundamental value. Realizing this return
only at the end of a simulation provides a sparse reward signal,
which presents challenges for learning. We can facilitate effective
training by defining intermediate rewards. A natural choice in this
instance is the change in cash plus valuation of holdings at the next
arrival given the current state. Valuation is with respect to the final
fundamental, which we can use for training even though it is not
observable by the agent until the end of the run. It can be easily
demonstrated that these intermediate rewards are guaranteed to
sum to the final total return.

Additionally, beyond the ability to customize your own observa-
tion spaces, we offer several ready-made features that can be used
as components of observations, including:
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• time remaining 𝑇 − 𝑡
• current fundamental value 𝑟𝑡 , or a noisy observation
• current best BID and ASK prices in the order book (if any)
• agent’s current holdings 𝑞
• agent’s private values
• market summary statistics, such as volatility measures

4 Agents
PyMarketSim provides a library of agent classes, extensible by
user implementations that extend the abstract agent base class.
Agents are designated within roles, which dictate their arrival rates,
valuation models, and the observations they get on each arrival.

An important role category is that of background trader .3
Background traders have private values as described in §3.4. On
each arrival, background traders get an observation of the funda-
mental (exact or noisy), and also observe elements of market state,
such as BID and ASK quotes and recent transaction prices. They
may then submit an order to buy or sell a single unit of the security,
replacing their existing order in the LOB, if any. Whether they buy
or sell is determined by a fair coin flip.

Another canonical trader role is that of market maker (MM).
MMs get the same kind of observation as background traders, but
have no private values. Our MM agents submit ladders of unit buy
and sell orders, as in the MM model of Chakraborty and Kearns [7].
More specifically, we follow the strategy described by Wah et al.
[36], generating a ladder with 𝐾 > 0 rungs spaced 𝜉 > 0 price units
apart.

The following sections describe two of the heuristic strategies
we provide for background traders, as well as PyMarketSim’s class
of background traders derived via dRL.

4.1 Zero Intelligence
Zero Intelligence (ZI) agents [14] implement a simple strategy
based on requesting a randomized surplus from their current valu-
ation. Recall 𝑓𝑇 is the agent’s estimate the value of the final funda-
mental, as computed by (3). 𝜃 denotes the agent’s private values,
and 𝑞 its current holdings. The ZI agent draws a random offset,
𝑠 ∼ U(𝑅min, 𝑅max), according to its range parameters 𝑅min and
𝑅max. It then submits a limit order at price 𝑝 , requesting a surplus
of 𝑠 from its current valuation:

𝑝 = 𝑓𝑇 +
{
𝜃𝑞+1 − 𝑠 if assigned buy,
𝜃𝑞 + 𝑠 if assigned sell.

(5)

Our ZI agents further include a threshold parameter 𝜂 ∈ [0, 1],
by which they determine whether the currently available surplus is
attractive enough to take immediately. Let 𝑝∗ denote the currently
available market price (BID if the agent is selling, ASK if buying).
From (5), 𝑠 is the surplus demanded by the ZI agent. If the agent
can get a fraction 𝜂 or better of its demanded surplus at the current
market price:{

(𝑓𝑇 + 𝜃𝑞+1) − 𝑝∗ > 𝜂𝑠 if assigned buy
𝑝∗ − (𝑓𝑇 + 𝜃𝑞) > 𝜂𝑠 if assigned sell

3We refer to it as a category because a simulation configuration can have multiple
background trader roles, for example differing in arrival rate or parameters of the
valuation model.

the agent places its limit order at 𝑝∗ instead of 𝑝 , resulting in an
immediate transaction. Setting 𝜂 = 1 is the same as ZI without this
threshold decision.

4.2 HBL
Unlike ZI, HBL agents [13] not only utilize their own observations
and private values but also exploit order book information. They
estimate the probabilities of given limit prices transacting based
on historical transactions and submit orders that maximize their
expected surplus at the current valuation estimate. The HBL agents
form their probability estimates by analyzing the outcomes of the
last 𝐿 trades, where 𝐿 represents the agent’s memory length and
serves as a strategic parameter. Upon arrival at time t, the agent
constructs a belief function 𝑓𝑡 (𝑃). This function is designed to
estimate the likelihood that placing an order at price 𝑃 will lead to
a successful transaction:

𝑓𝑡 (𝑃) =


𝑇𝐵𝐿𝑡 (𝑃 )+𝐴𝐿𝑡 (𝑃 )

𝑇𝐵𝐿𝑡 (𝑃 )+𝐴𝐿𝑡 (𝑃 )+𝑅𝐵𝐺𝑡 (𝑃 ) if assigned buy

𝑇𝐴𝐺𝑡 (𝑃 )+𝐵𝐺𝑡 (𝑃 )
𝑇𝐴𝐺𝑡 (𝑃 )+𝐵𝐺𝑡 (𝑃 )+𝑅𝐴𝐿𝑡 (𝑃 ) if assigned sell

(6)

In this context, we use specific abbreviations to describe different
types of orders and their outcomes. 𝑇 represents transacted orders,
while 𝑅 denotes rejected orders. 𝐴 and 𝐵 represent sell and buy
orders, respectively. 𝐿 and 𝐺 describe orders with prices less than
or equal or greater than or equal to P, respectively.

Our market model allows for order cancellations and maintains
active orders in the order book, which complicates the definition
of a rejected order. To address this, we introduce two time-based
concepts: the grace period (𝜏𝑔𝑝 ) and the alive period (𝜏𝑎𝑙 ) of an
order. The grace period is defined as 𝜏𝑔𝑝 = 1/𝜆𝑎 , where 𝜆𝑎 is the
agent’s arrival rate. The alive period (𝜏𝑎𝑙 ) of an order is measured
from its submission until one of three timesteps depending on the
corresponding event: the order transaction time (if it transacts),
the order withdrawal time (if it is inactive), or the current time
(if it is still active). We consider an order fully rejected only if its
alive period exceeds the grace period (𝜏𝑎𝑙 ≥ 𝜏𝑔𝑝 ). If the alive period
is shorter than the grace period, we treat the order as partially
rejected, with the degree of rejection calculated as the 𝜏𝑎𝑙/𝜏𝑔𝑝 . The
belief function is initially defined only for prices observed within
the agent’s memory window. To extend this function across the
entire price range, we employ cubic spline interpolation. For com-
putational efficiency, we select a predetermined number of knot
points and perform the interpolation between these points. The
agent then determines its expected profit-maximizing price:

𝑝∗𝑖 (𝑡) =
{

arg max𝑝 (𝑓𝑡 + 𝜃𝑞+1
𝑖

− 𝑝) 𝑓𝑡 (𝑝) if assigned buy
arg max𝑝 (𝑝 − 𝜃𝑞𝑖 − 𝑓𝑡 ) 𝑓𝑡 (𝑝) if assigned sell

(7)

In certain specific scenarios, HBL agents temporarily adopt the
behavior of ZI agents. This occurs at the start of a trading period
when there are fewer than 𝐿 transactions recorded or when one side
of the order book is completely empty. However, these cases are in-
frequent, so reverting to ZI strategy during these brief periods does
not significantly impact their overall performance. The behavior
of HBL agents is further explored in [16] inside the PyMarketSim
environment.
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4.3 TRON Agents
Heuristic trading strategies, as described above, play an important
role in agent-based finance studies. Strategies derived through dRL
represent a qualitatively distinct class, which in our setting we call
trained-response order networks, or TRON agents. TRON agents
are drawn from a large space of candidate policies represented by
neural networks, affording a much greater degree of expressivity
compared to heuristic strategies. Because they are optimized for
particular settings, TRON agents may be especially capable in those
settings. There is also, however, a risk that TRON agents overfit to
their training context, and due to their complexity they may be less
interpretable than hand-designed heuristics.

The TRON background trading agents we employ map observed
market state to action parameters (𝑠, 𝜂), corresponding to the re-
quested surplus and threshold parameters employed by ZI agents
as described in §4.1. Unlike ZI, TRON agents specify a specific 𝑠
rather than drawing from a range [𝑅min, 𝑅max]. More significantly,
its action is conditional on the agent’s observations of the market.
While other heuristic strategies, like HBL or adaptive extensions
of ZI, do respond to market conditions, their responses are regular
and limited. This contrasts with the general conditioning that a
neural network representation provides.

Our TRON agent is implemented with the architecture from
R2D2 [21] using the dueling DQN [39] and an LSTM [18] as its
recurrent component. Fig. 3 depicts the network architecture. Its
inputs are the features provided by our dRL wrapper, described
in §3.5, plus an indicator for the side (buy or sell) the TRON agent
has been assigned for this arrival. The output consists of the order
parameters 𝑠 and 𝜂. On each arrival, the TRON agent processes
inputs according to current observations, generating then bids ac-
cording to the ZI policy as defined by (5), substituting an executable
order instead if the threshold condition applies.

5 Experiments
5.1 Operation Time
Since PyMarketSim is designed as an environment for deep learn-
ing experiments in financial markets, computational efficiency is a
critical factor. To demonstrate the performance of our implementa-
tion, we conducted a series of preliminary experiments measuring
the average runtime for order operations in the LOB.

We generated orders with random prices and sides (buy/sell).
These orders were added to the LOB without performing any clear
operations, allowing the LOB size to grow to match the number
of orders. We performed 2 × 2 sets of experiments with respect
to order sizes and the number of orders (equivalently LOB size):
unit orders (quantity = 1) vs. orders with quantities drawn from
a uniform distributionU(1, 103); small (103 orders) vs. large (106

orders) LOB size.
We present our results in Table 2. Compared to the results pre-

sented in Table 1 of Frey et al. [12], our average runtime is orders of
magnitude lower than that of JAX-LOB (e.g., average time needed
by JAX-LOB for the add operation is ∼ 0.17 ms for an LOB capacity
of 103) and we support larger total size for LOBs. These results
highlight the following properties of PyMarketSim:

Advantage Stream Value Stream

Input
(input_dim)

Linear
(input_dim → 128)

ReLU

LSTM
(128 → 128)

Linear
(128 → 128)

Linear
(128 → 128)

ReLU

Linear
(128 → 42)

Q-value Computation
Q = V + (A - mean(A))

ReLU

Linear
(128 → 2)

η
(21)

s
(21)

Figure 3: TRON neural network architecture.

Efficiency: Even for large order books with 106 orders, the
average operation time remains under 0.005milliseconds, indicating
high performance.

Scalability: The operation time increases only moderately (less
than 2x) when moving from 103 to 106 orders, suggesting scalability.

Order complexity: Variable-quantity orders incur a slight per-
formance penalty compared to unit orders, but the difference is
relatively small (about 1.5x slower).
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LOB size Order Size Average Operation Time (𝜇s)
103 𝑞 = 1 1.89
103 𝑞 ∼ U(1, 103) 2.98
106 𝑞 = 1 3.40
106 𝑞 ∼ U(1, 103) 4.71
Table 2: Runtime of LOB operations in 4-Heap.

Given the difference in architecture between PyMarketSim and
ABIDES [6], it is harder to provide a direct comparison between
the runtime of the two. One possible benchmark would be to com-
pare the average messages per second in ABIDES to the average
number of agent and market actions per second in PyMarketSim:
ABIDES processes approximately 29,000 messages per second while
PyMarketSim can handle up to 300,000 LOB actions or 15,000 agent
actions per second. This suggests that PyMarketSim is better suited
to scenarios with fewer agents and a longer runtime. Another quali-
tative difference between PyMarketSim and ABIDES is noteworthy.
One particular strength of PyMarketSim is its modularity: it can, in
principle, simulate an arbitrary number of markets each trading any
number of (potentially shared) securities; it also allows enhanced
customization in handling the latency of agents instead of it being
dependent on agent runtime as in ABIDES.

These performance characteristics make PyMarketSim well-
suited for large-scale simulations and reinforcement learning ex-
periments, where millions of market interactions may need to be
simulated rapidly. The efficiency of the LOB operations allows users
to focus on developing and testing sophisticated trading strategies
without being constrained by computational limitations.

In comparing the performance of market simulators, it is im-
portant to acknowledge differences in the underlying rationales of
the design choices of these systems. PyMarketSim is designed to
enable efficient multiagent reinforcement learning for markets with
a moderate total number of agents and assuming multiple machines
are available. Inspired by Sample Factory [30] and IMPALA [10],
PyMarketSim runs fast on CPU and can be run on an arbitrary
number of nodes to increase the total simulations run via paral-
lelization. One the other hand, it is evident that ABIDES is designed
to efficiently handle a much larger number of agents whereas JAX-
LOB emphasizes running a larger number of simulations on a single
machine.

5.2 Simulation Settings
The environments in our experiments are characterized by several
key parameters that define the market conditions. The values we
use in our experiments are adopted from prior studies [36, 42] and
described here. Settings that vary by environment are shown in
Table 3.

(1) 𝑁 = 25. Total number of agents in the market.
(2) 𝑞max = 10. Maximum holding, limiting the magnitude of an

agent’s position.
(3) 𝑓 = 1 × 105. Mean fundamental value.
(4) 𝜅 = .01. Mean-reversion parameter, determining how quickly

the fundamental value returns to its mean.
(5) 𝑇 = 2000. Number of time steps in each simulation episode.

(6) 𝜆 (varies). Reentry rate, determining how frequently agents
interact with the market.

(7) 𝜎𝑠 (varies). Shock variance of the fundamental.
(8) 𝜎pv (varies). Variance of the private values, representing the

diversity of agent valuations.

Env 𝜆 𝜎2
𝑠 𝜎2

𝑃𝑉
ZI TRON

A 0.0005 1 × 106 5 × 106 106 114
B .005 1 × 106 5 × 106 152 170
C 0.012 2 × 104 2 × 107 1259 1402

Table 3: Environment parameters and average profit for the
two agent strategies.

5.3 Single-Agent RL
For each environment, we fixed 24 agents to play equilibrium ZI
settings, and used dRL to derive a TRON agent. We trained our
TRON agent using R2D2 [21], run for 3 million simulations. The
results for the three environments are presented in Table 3. The
equilibrium ZI settings are as reported in prior studies of these
environments [36, 42]. The TRON agent consistently outperformed
the baseline ZI agents: by 8%, 12%, and 11%, respectively in the
three test environments.

5.4 Policy-Space Response Oracles
5.4.1 Overview. PSRO [3, 24] is a flexible framework for computing
approximate Nash equilibria in complex games, based on simulation
and dRL. The core idea of PSRO is to iteratively expand a restricted
game by adding best responses to some (mixed) strategy profiles in
the current restricted game. Specifically, PSRO proceeds as follows:

(1) Initialize the restricted game with a set of some policies (e.g.,
random policies) for each player;

(2) Compute an equilibrium over the restricted game with re-
spect to a solution concept, yielding a target profile;

(3) For each player, compute a best response to the target profile
using dRL;

(4) Add these best responses to the restricted game and repeat
from step 2 until convergence or a computational budget is
exhausted.

Depending on the solver used to extract a target profile, PSRO im-
plements different approaches to strategy exploration. For example,
using Nash equilibrium corresponds to the double oracle method
[27], and using a uniform distribution corresponds to fictitious play
[17]. Other choices such as projected replicator dynamics [24] or
regularized replicator dynamics [38] have shown advantages for
some games.

In our experiments with PyMarketSim, we apply PSRO to iden-
tify equilibrium strategies between two competing TRON agents,
holding the other players fixed. This approach enables us to explore
the strategic landscape of our simulated market, revealing trading
strategies that are resilient against an adaptive of opponents.

5.4.2 Experiment. We use PSRO to train two TRON agents at once
(along with 23 fixed ZI agents), for the environment labeled C in
Table 3. Starting from the singleton comprising the equilibrium ZI



ICAIF ’24, November 14–17, 2024, New York, USA Chris Mascioli, Anri Gu, Yongzhao Wang, Mithun Chakraborty, and Michael P. Wellman

strategy, we augment the set of available strategies by training a
new TRON agent at each iteration. Let 𝑆𝑖 denote the set of available
strategies following PSRO iteration 𝑖 . The training target for itera-
tion 𝑖 is defined by the equilibrium over two players from strategy
set 𝑆𝑖−1, trading in this market environment along with the 23 fixed
ZI agents. Let TRON𝑖 denote the TRON agent trained at iteration 𝑖 .
Thus, 𝑆𝑖+1 = 𝑆𝑖 ∪ {TRON𝑖 }.

The results from our PSRO experiment are shown in Fig. 4. We
measure convergence to equilibrium by an estimate of regret: how
much additional profit an agent could gain by deviating from the
current candidate solution to an alternative strategy. Specifically,
the regret at PSRO iteration 𝑖 is estimated by the difference between
profit of TRON𝑖+1 and the profit of the equilibrium over 𝑆𝑖 . For
instance, the regret at iteration 0 is the difference in profit between
TRON1 and the ZI baseline when played along with the 24 fixed ZI.
From Table 3 this is 1402 − 1259 = 143.

Figure 4: PSRO regret plot for the two TRON agents.

Once the first TRON agent is introduced, the equilibria com-
puted by PSRO comprise mixtures over TRONs alone, assigning
zero probability to the ZI strategy. As can be seen Fig. 4, the gains
from training new TRON agents produces diminishing returns, ap-
proaching negligible increases after just a few iterations. That the
TRON agents stop showing improved performance so quickly may
be due to the limited amount of interaction between the two learn-
ers, who represent only 2/25 of the agents in the market. Allowing
the ZI agents to recalibrate their parameters after each PSRO iter-
ation would possibly affect this convergence pattern, but has not
been explored here.

6 Conclusions and Future Work
In this paper, we introduced PyMarketSim a flexible and efficient
financial market simulation environment designed for training
and evaluating trading agents using deep reinforcement learning
techniques. Our framework provides a comprehensive set of tools
for simulating continuous double auction markets, incorporating
key elements such as private valuations, asymmetric information,
and a high-performance LOB mechanism.

We demonstrated the versatility of PyMarketSim through exper-
iments in both single-agent and multi-agent reinforcement learning
settings. Our results showcase the potential for developing sophis-
ticated trading strategies and exploring complex market dynamics.

The introduction of TRON agents extends the traditional Zero Intel-
ligence model, providing a more realistic and adaptive background
trader for market simulations.

While PyMarketSim offers a solid foundation for financial mar-
ket research, there are several exciting directions for future work:

(1) Options Trading: Extending the framework to support op-
tions trading [33] would significantly broaden its applicabil-
ity. This could involve:
• Implementing various option types (e.g., European, Amer-
ican) and their associated pricing mechanisms.

• Exploring the use of Neural Differential Equations [23] to
recover Black-Scholes [4] pricing within the PyMarketSim
environment, potentially leading to new insights in option
pricing dynamics.

(2) Enhanced Market Complexity: Inspired by recent ad-
vances in generative AI, such as Generative Agents [29], we
could create a more intricate and realistic market environ-
ment by:
• Simulating a virtual world with social media and news
reports that influence market dynamics.

• Implementing agent interactions beyond direct trading,
such as information sharing or strategy imitation.

• Modeling the impact of macroeconomic events and policy
changes on market behavior.

(3) Multi-Asset Markets: Expanding PyMarketSim to handle
multiple interconnected assets would allow for the study of
portfolio management strategies and cross-asset dependen-
cies.

(4) Market Microstructure Analysis: Developing tools for
in-depth analysis of market microstructure effects, such as
order flow imbalance or liquidity provision, could provide
valuable insights for both researchers and practitioners.

These enhancements would not only increase the realism and com-
plexity of the simulated markets but also open up new avenues for
research in areas such as behavioral finance, market impact studies,
and the intersection of AI and financial economics.

In conclusion, PyMarketSim provides a powerful platform for
studying financial markets through the lens of artificial intelligence
and agent-based modeling. As the field continues to evolve, we
believe this tool will play a crucial role in advancing our under-
standing of market dynamics and in developing the next generation
of intelligent trading systems. We invite the research community
to build upon this framework, contributing to its growth and appli-
cability across various domains of financial research and practice.
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